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Brain–computer interfaces (BCIs) can convert mental states into
signals to drive real-world devices, but it is not known if a given
covert task is the same when performed with and without BCI-
based control. Using a BCI likely involves additional cognitive pro-
cesses, such as multitasking, attention, and conflict monitoring. In
addition, it is challenging to measure the quality of covert task
performance. We used whole-brain classifier-based real-time func-
tional MRI to address these issues, because the method provides
both classifier-based maps to examine the neural requirements of
BCI and classification accuracy to quantify the quality of task per-
formance. Subjects performed a covert counting task at fast and
slow rates to control a visual interface. Compared with the same
task when viewing but not controlling the interface, we observed
that being in control of a BCI improved task classification of fast
and slow counting states. Additional BCI control increased sub-
jects’whole-brain signal-to-noise ratio compared with the absence
of control. The neural pattern for control consisted of a positive
network comprised of dorsal parietal and frontal regions and the
anterior insula of the right hemisphere as well as an expansive
negative network of regions. These findings suggest that real-time
functional MRI can serve as a platform for exploring information
processing and frontoparietal and insula network-based regula-
tion of whole-brain task signal-to-noise ratio.

support vector machine | speech motor imagery | neurofeedback |
multi-voxel pattern analysis

Although overt actions allow us to interact directly with our
environment, much of our brain’s activity is devoted to co-

vert acts, such as motor planning, rehearsal, and self-directed
thought. Indeed, we enjoy a rich inner experience consisting of
activities such as visual imagery, inner language, somatosensory
awareness, recollection of the past, and planning for the future
(1). By definition, covert actions are usually neither observable by
a third party nor capable of directly affecting the outside world.
Brain–computer interfaces (BCIs), however, provide a techno-
logical means for converting thought into action by transducing
brain measurements into control signals for devices, such as
robots and computer displays. One strategy for BCI control is to
provide the subject with task commands, such as “move the cursor
to the right by imagining that you are moving your right hand.”
In effect, BCI control creates a synthetic link between covert

action and the role of sensory feedback. The additional cognitive
requirements and consequences for BCI control, however, are
unknown, and several interrelated cognitive processes could play
a role. Examples include multitasking for dual task performance
(2–5), conflict and outcome monitoring (6, 7), attention (8), re-
ward monitoring (9, 10), and learning and conditioning (11, 12).
If present, each of these cognitive processes should have specific
neural signatures (prefrontal cortex, anterior cingulate, fronto-
parietal networks, ventral striatum, etc.).
An additional consideration is the performance of the task

itself. Evaluating how well a subject is executing a covert task is
challenging. Moreover, it is important to evaluate whether the
BCI is an aid or serves as a distracter and if task-based brain

activity differs between BCI control (C) and no control (noC)
conditions. A nascent technology that holds promise for ad-
dressing the effects of BCI is real-time functional MRI (rtfMRI).
In particular, classification-based rtfMRI (13, 14) can quantify
the ability to predict task states for both C and noC conditions
and simultaneously examine neural differences that arise with
BCI control. Thus, this study was designed to investigate the
neural underpinnings of BCI control and evaluate its impact on
task classification accuracy.

Results
A familiar example of human covert behavior is inner speech. We
scanned 24 healthy subjects who performed blocks of fast and
slow covert counting. Such tasks hold particular promise for
therapeutic applications of rtfMRI, because mental imagery may
be a back door to the motor system for rehabilitation that lessens
patient frustration and fatigue (15, 16). For this task, speech rate
is a crucial aspect of communication that affects intelligibility. It is
such an important factor that diadochokinetic rate (where a sub-
ject is asked to produce syllables as rapidly as possible) is almost
universally used to evaluate oral motor skill and differentially
diagnose pathology. Furthermore, speech rate represents a target
for therapy in dysarthria (17), has been studied in normal pop-
ulations with neuroimaging (18–20), and has known neurological
vulnerabilities in development, traumatic brain injury, and stroke.
Fig. 1A shows examples of the display presented during the

fMRI experiments. The two categories of experiments (C and
noC) are shown in Fig. 1B. Subjects performed two runs of both
conditions, and the order was randomized. At the beginning of
each of four runs, both the experimenter’s spoken instructions as
well as the text written on the display informed the subjects that
they would or would not be controlling the computer interface.

Support Vector Machine Classification of Fast vs. Slow Covert Counting.
We used support vector machine (SVM) -based whole-brain
classification to control the stimulus display, with noC runs serving
as training data for C runs (SI Materials and Methods). Additional
SVM analysis was performed offline to do cross-validation and
compare the combinations of training and testing with C and noC
data. The classification accuracies from this experiment establish
the degree to which covert speech rate can be used to modulate
feedback interfaces. The challenge for both real-time and sub-
sequent offline classification was to distinguish between fast and
slow rates of covert counting. Because experimental parameters,
such as the covert nature of both tasks, the visual display, and trial
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durations, were constant, it was an open question as to whether
a classifier could differentially detect fast from slow within a pre-
sumably spatially overlapping covert counting brain network. Be-
cause each subject participated in four runs, offline analysis used
12 possible train–test permutations. Fig. S1A shows that all train–
test permutations resulted in above-chance classification accura-
cies. However, significant heterogeneity of the results indicates
that interface control did influence classification accuracy for this
experiment. One important observation is that the type of run
mattered more than the time order of the run. Specifically, although
early runs could not be classified more accurately than late runs,
the feedback-controlled runs led to higher classification accuracy
than nonfeedback-controlled runs (Fig. S1 and SI Results). Fur-
thermore, Fig. 2A shows the influence of training and testing
a classifier with the two different types of runs averaged across all
subjects. In the resulting four possible combinations, we observed
a significant increase in classification accuracy for subject-controlled
runs. The case of training and testing on runs where the subject was
not in control (noC/noC) is analogous to a multivoxel analysis of

a standard offline version of the task. The noC/C data correspond to
our standard approach to rtfMRI experiments. We have noted in
preliminary studies that noC/C tends to be higher than the reverse
(C/noC) (13, 21). A measurement that we were able to make with
this experimental design was the impact of both training and testing
with C data. Compared with the other combinations, this case (C/C)
showed a statistically significant increase in classification accuracy
(P = 0.003). Taken together, these results show that neurofeedback-
based interface control significantly improved classification accuracy
for this experiment.
The analysis also produced SVM maps of fast vs. slow speech

(Fig. 2B and Table S1). Fig. S2 and Table S2 show SVM and
general linear model analyses of speech (fast and slow vs. rest).
The regions in Fig. 2B match previously published speech stud-
ies. Notably, fast > slow regions corresponded to the speech
production network described in the work by Sörös et al. (22),
including medial structures such as supplementary and cingulate
motor areas, thalamus, red nucleus, cerebellum, and dorsal
brainstem as well as lateral primary motor cortex and superior
temporal gyrus. The cerebellar contribution agrees with previous
reports (18, 19). The covert speech maps (Fig. S2) include all of
the main effects reported by the study by Riecker et al. (19),
which examined six rates of syllable production, including both
superior and inferior cerebellum. Although both superior and
inferior cerebellum were present in the covert speech vs. base-
line, the inferior cerebellum was absent in the fast vs. slow map.
The study by Riecker et al. (19) assigned superior cerebellum to
a preparative loop that coordinates with supplementary motor
area, anterior insula, and dorsolateral frontal cortex, whereas the
inferior cerebellum was in the executive loop with motor cortex,
thalamus, putamen, and caudate. One explanation for our results
is that the executive load at the level of the inferior cerebellum
was relatively matched between the slow and fast conditions and
did not contribute to discriminating between the two rates. Be-
yond speech, the areas in Fig. 2B suggest a general relationship
to motor coordination. For example, Rao et al. (23) asked sub-
jects to synchronize finger tapping with an auditory metronome
at 3.3 and 1.7 Hz. In a continuation phase, subjects maintained
the same rate without the auditory cue. This experimental detail
is similar to the task here; subjects practiced two different rates
before internally pacing themselves at those targets. Our results
show a network that is highly similar to the continuation condi-
tion used by Rao et al. (23) that included cerebellum, supple-
mentary motor area, putamen, thalamus, and superior temporal
gyrus. Rao et al. (23) concluded that the medial premotor net-
work was critical to the internal representation of movement
timing, which seems to generalize here to speech imagery. Based
on observed superior temporal and inferior frontal activation,
the study also suggested that subjects used an internal auditory
representation of timing. It is likely that our subjects used
a similar strategy, including phonological processing (22).

Fig. 1. rtfMRI of fast vs. slow covert speech. (A) Subjects performed covert
counting at fast and slow rates. A rest condition followed each counting
block and occasionally was preceded by a number? cue, where subjects
reported aloud their last counted number. (B) Subjects controlled needle
movements in two of four fMRI runs (classifier-based rtfMRI decoded fast or
slow counting to update the display). In the other two runs, the needle
position simply increased at a fixed rate for the duration of the block.

Fig. 2. SVM classification of fast vs. slow covert counting. (A) Classifier training and testing combinations for C and noC showed a statistically significant
increase in accuracy when a C run was used to train an SVM and then subsequently applied to classify another C run (*P = 0.003, two-tailed). (B) Regions for
SVM of fast vs. slow covert counting that were used to control the rtfMRI computer interface thresholded at P < 0.05 [false discovery rater (FDR) corrected].
L, left; R, right.
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BCI Control Increases Whole-Brain Signal-to-Noise Ratio for the
Covert Task. Our results in Fig. 2A and Fig. S1 show that the
presence of neurofeedback changes the classification accuracy of
fast vs. slow covert counting. We therefore questioned whether
neural differences would also be detectable between C and noC
at the group level. By combining both fast and slow blocks and
contrasting C vs. noC runs, we found that subjects’ control
consisted of a positive network of frontoparietal regions and the
anterior insula of the right hemisphere and an extensive negative
network in areas that have been implicated in the default mode
network, such as posterior cingulate and precuneus (24), as well
as areas overlapping with covert speech vs. rest (Fig. S2 and Table
S2), such as supplementary motor area, right Brodmann area (BA)
4, and right BA 13 (Fig. 3 and Table 1). Right anterior insula has
been implicated in interoceptive awareness (25) as well as en-
gagement of attention and disengagement of task irrelevant
systems (26), whereas right frontoparietal areas are thought to
control attention (27). Frontoparietal circuitry is critical in
a variety of relevant contexts, such as control of action as well as
object manipulation and tool use (28). In particular, the right
frontoparietal circuit (Fig. 3 and Table 1) matches early imaging
reports of attention to sensory input (29–32).
The general framework of linear classification of the formPV
v=1wvzvðtÞ (where~zðtÞ is the time series of fMRI images with V

voxels) is that the weight vector, ~w, specifies the signal direction
for classification in the multivariate image space. Note that,
because ~w is also V-dimensional, it can be displayed on the brain
as an SVM brain map. Strother et al. (33) showed that the cor-
relation between two such maps is proportional to a task’s signal-
to-noise ratio (SNR). To illustrate, taking the correlation of the
maps for a subject’s two C runs leads to a 2 × 2 correlation matrix
that can be decomposed through singular value decomposition:
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In other words, we obtain two eigenvectors. The first eigenvector
is the task’s signal direction, and the second eigenvector is or-
thogonal to the first eigenvector. With noise distributed equally
in both eigenvectors, SNR can be defined as the ratio of the
signal and noise variances: SNRC = ð1+ rCÞ− ð1− rCÞ

1− rC
= 2rC

1− rC
. For the

noC condition, SNR can be estimated through the same process:
SNRnoC = 2rnoC

1− rnoC
. The use of both classification accuracy and

a weight vector’s spatial correlation has been shown for evaluat-
ing the quality of multivoxel pattern analysis models, but pre-
vious reports have not shown a clear relationship between SNR
and classification accuracy. For example, published results show
that high accuracy can occur even for low SNR (33, 34). Our
data, however, led to a strong relationship for the difference
between C and noC conditions. Defining the average classifica-
tion accuracies of these two types of runs as AC and AnoC, Fig. 4
shows ðAC −AnoCÞ vs. ðSNRC − SNRnoCÞ, which resulted in a sta-
tistically significant linear relationship. Thus the tendency for
higher classification accuracies when subjects are in control of
the feedback interface (Fig. 2A) corresponds to a proportional
increase in whole-brain SNR for the fast vs. slow covert counting
task. Relationships between SNR and the frontoparietal–insula
regions are reported in SI Results and Fig. S3.
To summarize our experimental observations, the C condition

increased classifier accuracy (Fig. 2A and Fig. S1), and it co-
occurs with a right frontoparietal and anterior insula network
(Fig. 3) and an increase in task SNR (Fig. 4). To further evaluate
the plausibility of SNR as a mechanism for changing classifier
accuracy, we performed simulations of this effect. Specifically,
we embedded a task signal as a pattern in a large noise vector (SI
Materials and Methods). The goal was to confirm more generally
that differences in SNR for different runs can give rise to the
experimental results shown in Fig. 2A. The impact of SNR on the
classification accuracies for the four SVM train/test scenarios
(noC/noC, noC/C, C/noC, and C/C) was then estimated. Al-
though only two examples are shown in Fig. 5, we have found
that the relative ranking of classification accuracies (especially
the improvement in C/C classification accuracy over the other
three conditions) is robust across a wide range of simulation
parameters.

Discussion
This study examined whether differences exist in fMRI mea-
surements with and without neurofeedback-based control of a
computer interface. If the C and noC conditions were equivalent
for the fast and slow covert counting tasks, they should have
generated data that led to equivalent classification accuracy
estimates and SVM models. Our results, however, show that the
act of controlling an interface leads to increased classification
accuracy. Furthermore, we showed that this increased accuracy
in the C condition corresponded to increases in whole-brain
SNR. Neurally, C vs. noC coincided with a positive frontopar-
ietal and insula network as well as a broadly distributed negative
network of regions, which are shown in Fig. 3 and Table 1.

Fig. 3. Regions for rtfMRI neurofeedback-based control of a computer in-
terface using fast vs. slow covert counting (P < 0.05, FDR corrected).

Table 1. Regions for rtfMRI-based stimulus control

Region* BA

Coordinates (mm)

x y z t

C > noC
R anterior insula 36 20 3 4.8
R middle frontal 6 48 2 38 3.9
R inferior parietal 40 55 −38 41 3.9

C < noC
Posterior cingulate 30 −5 −60 8 −6.1
R insula 13 43 −14 13 −5.5
Anterior cingulate 32 −2 45 7 −4.1
Supplementary motor area 6 10 −24 51 −3.4
L middle frontal 8 −21 27 39 −5.0
R precentral 4 36 −24 49 −3.8
L precuneus 7 −15 −43 56 −3.9

L, left; R, right.
*Foci are in Talairach coordinates and reflect the peak t value for regions
with P < 0.05, FDR correction, and extent threshold > 20 voxels.
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Taken together, these results suggest that BCI control enhan-
ces attention to fMRI tasks, reduces extraneous processing to
improve whole-brain task SNR, and leads to increased multivoxel
classification. Although we favor this conclusion, it is important to
take two factors into consideration. First, our experimental design
was motivated by a need to control for the sequential order of
experimental runs as a potential confound for the C vs. noC
effects. One remaining limitation of this study, however, is that it
is conceivable that our results are partially caused by uncontrolled
effects stemming from the subjects’ belief of being in control of
the interface. Future experiments that provide insight into the
interaction between belief in control and the actual state of being
in control would complement a number of research areas (e.g.,
perceptual learning) (35, 36) that are actively examining the roles
of feedback, fake feedback, and reinforcement. Second, the role
of the frontal, parietal, and anterior insula regions is correlative
and may additionally include areas that we have not detected.
Furthermore, these regions engage in a wide variety of cognitive
functions, and thus, we have inferred attention here merely as
a hypothesis for future experiments (37).
The quantification of SNR relies on a definition of signal. In

many communication contexts, the transmitted signal is known,
even if the receiver is challenged by channel noise and other ex-
traneous signals that share overlapping bandwidth. In fMRI, in-
strumentation noise and known MRI artifacts from sources such as
heart rate and respiration (38–40) exist, and a major challenge is in
isolating a poorly characterized signal from the spectrum of other
ongoing brain activity. Isolating signal from noise, in sum, is the
goal of multivoxel pattern analysis. Here, the classification objective
was to isolate fast covert counting from slow covert counting, which
are characterized only by the timing of the stimulus presentation.
Thus, the previous work to quantify SNR from multivariate clas-
sifier-based correlations (33) constitutes an important advance that
has proved an invaluable tool in this study. Specifically, SNR pro-
vided an explanation for the observed increases in classification
accuracy that we then tested directly through simulations. Fur-
thermore, the fact that SNR seems to be related to frontoparietal
and anterior insula activity possibly pertains to a growing number of
observations from electrophysiology that attention reduces slow
timescale coherence and is an important potential issue for
blood oxygenation level dependent (BOLD) imaging (41, 42).
Recent fMRI work (43) has shown that multivoxel techniques in
visual areas can be used to explore operational mechanisms of
attention, such as the biased competition framework (44), and
that techniques such as mutual information can quantify the
quality of population codes in visual cortex (45). The classifica-
tion results that we observe suggest that attention-related findings

from visual cortex generalize in a distributed manner to other
parts of the brain and nonvisual tasks.
Although the SVM analysis and the resulting maps (Fig. 2B)

were specific to this particular task, we suspect that the classifi-
cation accuracy differences between C and noC are much more
general in nature. First, we have previously observed this type of
dependence in classification accuracy in other rtfMRI tasks.
Specifically, in a pilot study of this task as well as a left vs. right
button pressing task, we observed higher classification accuracy
for the training/testing of noC/C than C/noC (21), and we had
early evidence for this classification accuracy asymmetry in our
original description of classification-based rtfMRI (13). Based on
the experimental and simulated results reported here, we con-
jecture that the asymmetry between noC/C and C/noC is related
to the classifier’s sensitivity to noise during training and testing.
We note that the SVM is a weighted average of the training data
and thus, reduces the noise in the training data through aver-
aging. Therefore, the combination of using noC runs as training
data (which reflects SVM-based noise reduction) paired with C
test data (which is already at an increased SNR) seems to be
more advantageous than the C/noC case in a wide range of fMRI
experiments. Second, the neural involvement of frontoparietal
and anterior insula regions is unlikely to be specific to the fast vs.
slow covert counting task. Third, we have begun to explore the
extent to which these results generalize by examining motor-
based (rather than neurofeedback-based) computer interface
control, in which subjects are tasked with closely matching target
finger-tapping rates. Our results generalize the rtfMRI covert
speech results reported here and show that SNR is increased for
pattern classifiers in tasks that use direct motor feedback.* In
light of this result, motor feedback (for overt actions) may be an
efficient route to improving task SNR, whereas rtfMRI and other
BCI modalities allow us to accomplish neurofeedback in
tasks where behavioral measures are not available (like the
covert task reported here).
If C boosts classification accuracy, then this points to impor-

tant rtfMRI experimental approaches for the future. For exam-
ple, it may be possible to dramatically boost neurofeedback
accuracy using a simultaneous training and testing rtfMRI mode.
The goal would be to progress beyond training the classifier in
the absence of neurofeedback and begin updating classifier
training while simultaneously providing feedback. At a more
fundamental level, the frontoparietal–anterior insula network
might also serve as a proxy signal for evaluating the performance
quality of covert tasks. Thus, subjects’ performance could be
rated based on changes in frontoparietal circuitry, and the
computer interfaces themselves could be designed to then opti-
mally engage this network.
The results of this study touch on two important experimental

aspects of fMRI. The first aspect is that fMRI tasks are necessarily
tailored to study specific components of behavior and satisfy
constraints of the scanning environment. Our results suggest,
however, that if the task design lacks feedback for action, it
results in subjects becoming less engaged in performing the task.
The second aspect is that the brain is a physical system over which
experimental paradigms exert incomplete control; beyond the
fMRI stimulus, subjects experience internal and external noise
and are constantly engaged in ongoing emotional, sensory, and
thought processing. Although covert behaviors are an ever-pres-
ent part of life, sustained attention to covert tasks is challenging.
rtfMRI cannot only bring thoughts to action in the outside world
but can simultaneously enable more engaging action for the ac-
tor. Controlling an interface—even through the noisy coupling

Fig. 4. Approximately 52% of the variance in classification accuracy
changes ðAC −AnoCÞ is explained by the corresponding change in global SNR
ðSNRC − SNRnoCÞ of the weight vectors ðR2 = 0:52; P = 7:1×10−5Þ.

*Zemla J, Lisinski J, LaConte S. Performance feedback engages attention, boosts task SNR,
and enhances pattern classification. Poster presented at the 18th Annual Meeting of the
Organization for Human Brain Mapping, June10–14, 2012, Beijing, China.
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provided by rtfMRI-based neurofeedback—did not detract from
the basic task. Rather, these results suggest that such control
increases whole-brain task SNR and enhances top-down atten-
tional resources to coordinate the inner states and intentions of the
individual as they are translated into actions in the environment.

Materials and Methods
Subjects. We collected data from 24 right-handed, native English-speaking
subjects (13 females, age range = 18–36 y, and mean age = 25 y). All subjects
gave informed consent, and the study was done in accordance with the
Institutional Review Board of Baylor College of Medicine.

Data Collection and rtfMRI. Structural and functional brain data were ac-
quired on a 3.0 T head-only scanner (Siemens Allegra). T1-weighted ana-
tomical volumes were acquired with a 3D magnetization prepared rapid
acquisition gradient echo pulse sequence with 192 axial slices (resolution =
1 × 1 × 1 mm3; repetition time (TR) = 1,200 ms; echo time (TE) = 2.93 ms;
field-of-view (FOV) = 245 mm2; flip angle (FA) = 12°). Functional data con-
sisted of 30 interleaved axial slices collected every 2 s with an echo time of 30
ms and a 90° flip angle using an echo planar sequence (resolution = 3.46 ×
3.46 × 5 mm3; FOV = 220 mm2). Each subject’s session consisted of four
functional runs that were each 8.5 min (255 volumes).

rtfMRI followed previously developed methods (13); the scanner was first
run in classifier training mode to obtain a model relating each fMRI volume
to the fast or slow counting rate for that time point (Materials and Methods,
Automatic Covert Speech Task and rtfMRI Stimulus Display). After a classifier
was trained, it was possible to run the scanner in feedback mode, where
fMRI volumes were decoded and online predictions of fast or slow counting
served as a control signal to update the stimulus display. For this study, if
more than one training run preceded it, the subject-controlled runs used the
most recent classifier for online decoding.

Automatic Covert Speech Task and rtfMRI Stimulus Display. To be included in
the study, subjects were assessed on their ability to perform covert
counting for fast and slow conditions. Subjects listened to recordings of
one of the authors (M.M.), in which the slow counting rate was ∼0.7
syllables/s, which was accomplished by stretching out the vowel and
maintaining smooth transitions to the next syllable. The recording of fast
rate was ∼7.8 syllables/s and produced as forced fast counting. Subjects
first imitated both the counting quality and rate aloud and then did so covertly

for the experimenter (T.D.P.). They were instructed to count sequentially,
starting from the number one. Although they were practicing outside the
scanner, the experimenter observed each subject’s behavior and verified
their fast and slow rates by occasionally interrupting their counting and
asking them to state their last counted number.

During all fMRI runs, subjects performed covert sequential counting during
randomly ordered blocks of fast or slow rates that ranged from 26 to 34 s in
duration. Rest periods lasting 10–14 s separated these covert counting
periods. Usually covert speech does not have a behavioral measure that can
be used to evaluate subject performance. For this task, however, we were
able to use a simple strategy to verify that subjects were performing the
task. Specifically, at the end of one to three blocks in each run, we included
a catch condition, in which the subjects were asked number? on the display
screen and instructed to answer aloud. Because both the block lengths and
the occurrence of a catch condition were randomized, the subjects needed
to perform the task and could not simply memorize a one response for the
slow condition and another response for the fast condition. In the control
room, the experimenter (but not the subject) was warned of an upcoming
catch question through a chime that sounded 4 s before the subject was
cued. The chime gave the operator time to press the scanner intercom
button to listen to the subject’s response.

The stimulus display consisted of an analog meter with a text area, which
instructed the subject with thewords fast, slow, rest, and number? During the
rest and number? conditions, the needle was white and pointed to the center
of the meter. During fast and slow periods, the subject was instructed to
perform the covert counting task as practiced outside the scanner. For the
subject-controlled runs, the needle’s control signal came from the SVM
classification of fast counting or slow counting, moving to the right for
correctly classified scans (or the left for incorrectly classified scans). At the
beginning of each of four runs, the experimenter informed the subjects
whether they were controlling the needle movement. In addition, written
reminders of the task were displayed before every run, which included the
heading practice and a statement that the needle would move automatically
during SVM training runs or the heading stating “you are controlling the
needle” and written instructions directed the subject to try to move the
needle to the right by doing the counting task.

To control for temporal effects, subjects were randomly assigned to one of
three groups, in which the order of C and noC runs was different. Because the
capability for classification-based interface control necessitates an existing
SVMmodel, the first run for all three groups was always a training run (noC).
During the experiment, subject control came from the most recent classifier
model generated by the latest training run. Thus, a training run’s model was
not used for interface control if it occurred just before another training run
or if a training run was the last run of the session. Similarly, some training
run models were used two times (for back-to-back subject-controlled runs).
The critical point for this study is whether the subject was controlling the
interface. Designating the runs (Rs) by their chronological order (R1, R2, R3,
and R4) or as C or noC, the three groups were group A (R1: noC, R2: C, R3:
noC, and R4: C), group B (R1: noC, R2: C, R3: C, and R4: noC), and group C (R1:
noC, R2: noC, R3: C, and R4: C).

fMRI Analysis.We usedAFNI (46) for offline analyses. The 3dsvm command was
used to perform SVM analyses as previously described (47). The anatomical
volumes were skull-stripped and registered to the TT-N27 atlas. The functional
data were transformed to Talairach space (48) by applying a single trans-
formation matrix, which was equivalent to transforming from functional to
structural and then from structural to Talairach coordinate systems. Each run
was motion-corrected by aligning to the first scan of that run. We examined
the spatial map and classification accuracy of each run by using each of four
runs individually as training data and testing on the other three runs. A binary
mask (segmenting brain pixels from pixels outside the brain) was generated
for the designated training run. The 3dsvm command was then applied using
the fMRI volumes, the mask, and a label file that specified the volumes cor-
responding to fast and slow covert speech. As designated by the label file,
baseline volumes and the first two TRs for every block were excluded from the
analysis. The resulting classification model was then applied to test the other
runs. Percent classification accuracy was calculated as (number of correctly
classified images)/(total number of images) × 100.
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Fig. 5. Classification accuracies for simulations of SNR for BCI C and noC. (A)
SNR was lowered for noC runs. (B) SNR was raised for C runs. SI Materials and
Methods details the simulation. These examples illustrate that relative dif-
ferences in SNR between different types of fMRI runs can lead to the classi-
fication accuracy results shown in Fig. 2A. Note that the only fMRI properties
that were modeled were the approximate ratio of the number of voxels to
observations (1,000:1), and the number of simulation trials matched the
number of subjects for this study (n = 24). Error bars show SEM across 24 trials.
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